Gravity-driven enhancement of heavy particle clustering in turbulent flow
Heavy particles suspended in a turbulent flow settle faster than in a still fluid. This effect stems from a preferential sampling of the regions where the fluid flows downward and is quantified here as a function of the level of turbulence, of particle inertia, and of the ratio between gravity and t...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2014-05, Vol.112 (18), p.184501-184501 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Heavy particles suspended in a turbulent flow settle faster than in a still fluid. This effect stems from a preferential sampling of the regions where the fluid flows downward and is quantified here as a function of the level of turbulence, of particle inertia, and of the ratio between gravity and turbulent accelerations. By using analytical methods and detailed, state-of-the-art numerical simulations, settling is shown to induce an effective horizontal two-dimensional dynamics that increases clustering and reduce relative velocities between particles. These two competing effects can either increase or decrease the geometrical collision rates between same-size particles and are crucial for realistic modeling of coalescing particles. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.112.184501 |