Threshold resummation effects in Higgs boson pair production at the LHC

A bstract We investigate the resummation effects in the Standard Model Higgs boson pair production through gluon-gluon fusion at the LHC with soft-collinear effective theory. We calculate the total cross section and the invariant mass distribution at Next-to-Next-to-Leading-Logarithmic level with π...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2013-07, Vol.2013 (7), p.1-28, Article 169
Hauptverfasser: Shao, Ding Yu, Li, Chong Sheng, Li, Hai Tao, Wang, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract We investigate the resummation effects in the Standard Model Higgs boson pair production through gluon-gluon fusion at the LHC with soft-collinear effective theory. We calculate the total cross section and the invariant mass distribution at Next-to-Next-to-Leading-Logarithmic level with π 2 -enhanced terms resummed, which are matched to the QCD Next-to-Leading Order results. In the high order QCD predictions exact top quark mass effects are included in full form factors. Our results show that the resummation effects increase the Next-to-Leading Order results by about 20% ~ 30%, and the scale uncertainty is reduced to 8%, which leads to increased confidence on the theoretical predictions. The PDF+ α s uncertainties are almost not changed after including resummation effects. We also study the sensitivities of the total cross section and the invariant mass distribution to the Higgs boson self-coupling. We find that the total cross section and the invariant mass distribution shape depend strongly on the Higgs boson self-coupling, and therefore it is possible to extract Higgs boson self-coupling from the total cross section and invariant mass distribution when the measurement precision increases at the LHC.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP07(2013)169