Process intensification on the separation of benzene and thiophene by extractive distillation

The separation of benzene and trace thiophene by extractive distillation was intensified in two aspects, that is, selection of a suitable entrainer and improvement of the process. The mixture of dimethylformamide (DMF) and an ionic liquid (IL) was chosen as the entrainer. Vapor–liquid equilibrium (V...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2015-12, Vol.61 (12), p.4470-4480
Hauptverfasser: Han, Jingli, Lei, Zhigang, Dong, Yichun, Dai, Chengna, Chen, Biaohua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The separation of benzene and trace thiophene by extractive distillation was intensified in two aspects, that is, selection of a suitable entrainer and improvement of the process. The mixture of dimethylformamide (DMF) and an ionic liquid (IL) was chosen as the entrainer. Vapor–liquid equilibrium (VLE) experiments using pure DMF and a mixed entrainer were conducted, and UNIFAC model for ILs was extended to the benzene‐thiophene‐DMF‐IL system. The results demonstrated that volatilization loss of DMF in the vapor phase was significantly reduced by adding IL. Moreover, an improved process with only four columns using a mixed entrainer was proposed. The results indicated that the improved process is more promising for decreasing energy consumption and equipment investment compared with the conventional six‐column process. The total heat duties of reboilers and condensers was decreased by 6.47% and 6.41%, respectively. The process intensification strategy may be directly extended to separate trace components of other systems. © 2015 American Institute of Chemical Engineers AIChE J, 61: 4470–4480, 2015
ISSN:0001-1541
1547-5905
DOI:10.1002/aic.15009