Extended convergence results for the Newton–Kantorovich iteration

We present new semilocal and local convergence results for the Newton–Kantorovich method. These new results extend the applicability of the Newton–Kantorovich method on approximate zeros by improving the convergence domain and ratio given in earlier studies by Argyros (2003), Cianciaruso (2007), Sma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2015-10, Vol.286, p.54-67
Hauptverfasser: Argyros, Ioannis K., Magreñán, Á. Alberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present new semilocal and local convergence results for the Newton–Kantorovich method. These new results extend the applicability of the Newton–Kantorovich method on approximate zeros by improving the convergence domain and ratio given in earlier studies by Argyros (2003), Cianciaruso (2007), Smale (1986) and Wang (1999). These advantages are also obtained under the same computational cost. Numerical examples where the old sufficient convergence criteria are not satisfied but the new convergence criteria are satisfied are also presented in this study.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2015.02.059