Generation of nanovesicles with sliced cellular membrane fragments for exogenous material delivery
Abstract We propose a microfluidic system that generates nanovesicles (NVs) by slicing living cell membrane with microfabricated 500 nm-thick silicon nitride (Six Ny ) blades. Living cells were sliced by the blades while flowing through microchannels lined with the blades. Plasma membrane fragments...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2015-08, Vol.59, p.12-20 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract We propose a microfluidic system that generates nanovesicles (NVs) by slicing living cell membrane with microfabricated 500 nm-thick silicon nitride (Six Ny ) blades. Living cells were sliced by the blades while flowing through microchannels lined with the blades. Plasma membrane fragments sliced from the cells self-assembled into spherical NVs of ∼100–300 nm in diameter. During self-assembly, the plasma membrane fragments enveloped exogenous materials (here, polystyrene latex beads) from the buffer solution. About 30% of beads were encapsulated in NVs, and the generated NVs delivered the encapsulated beads across the plasma membrane of recipient cells, but bare beads could not penetrate the plasma membrane of recipient cells. This result implicates that the NVs generated using the method in this study can encapsulate and deliver exogenous materials to recipient cells, whereas exosomes secreted by cells can deliver only endogenous cellular materials. |
---|---|
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/j.biomaterials.2015.04.028 |