Forming Heterojunctions at the Nanoscale for Improved Photoelectrochemical Water Splitting by Semiconductor Materials: Case Studies on Hematite
In order for the future energy needs of humanity to be adequately and sustainably met, alternative energy techniques such as artificial photosynthesis need to be made more efficient and therefore commercially viable. On a grand scale, the energies coming to and leaving from the earth are balanced. W...
Gespeichert in:
Veröffentlicht in: | Accounts of chemical research 2013-07, Vol.46 (7), p.1558-1566 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In order for the future energy needs of humanity to be adequately and sustainably met, alternative energy techniques such as artificial photosynthesis need to be made more efficient and therefore commercially viable. On a grand scale, the energies coming to and leaving from the earth are balanced. With the fast increasing waste heat produced by human activities, the balance may be shifted to threaten the ecosystem in which we reside. To avoid such dire consequences, it is necessary to power human activities using energy derived from the incoming source, which is predominantly solar irradiation. Indeed, most life on the surface of the earth is supported, directly or indirectly, by photosynthesis that harvests solar energy and stores it in chemical bonds for redistribution. Being able to mimic the process and perform it at high efficiencies using low-cost materials has significant implications. Such an understanding is a major intellectual driving force that motivates research by us and many others. From a thermodynamic perspective, the key energy conversion step in natural photosynthesis happens in the light reactions, where H2O splits to give O2 and reactive protons. The capability of carrying out direct sunlight-driven water splitting with high efficiency is therefore fundamentally important. We are particularly interested in doing so using inorganic semiconductor materials because they offer the promise of durability and low cost. In this Account, we share our recent efforts in bringing semiconductor-based water splitting reactions closer to reality. More specifically, we focus on earth-abundant oxide semiconductors such as Fe2O3 and work on improving the performance of these materials as photoelectrodes for photoelectrochemical reactions. Using hematite (α-Fe2O3) as an example, we examine how the main problems that limit the performance, namely, the short hole collection distance, poor light absorption near the band edge, and mismatch of the band edge energetics with those of water redox reactions, can in principle be addressed by adding nanoscale charge collectors, forming buried junctions, and including additional light absorbers. These results highlight the power of forming homo- or heterojunctions at the nanoscale, which permits us to engineer the band structures of semiconductors to the specific application of water splitting. The key enabling factor is our ability to synthesize materials with precise control over the dimensions, crystallinity, and |
---|---|
ISSN: | 0001-4842 1520-4898 |
DOI: | 10.1021/ar300302z |