Green Synthesis, Characterization, and Antibacterial Activity of Silver/Polystyrene Nanocomposite
A novel, nontoxic, simple, cost-effective and ecofriendly technique was used to synthesize green silver nanoparticles (AgNPs). The AgNPs were synthesized using orange peel extract as a reducing agent for silver nitrate salt (AgNO3). The particle size distribution of AgNPs was determined by Dynamic L...
Gespeichert in:
Veröffentlicht in: | Journal of nanomaterials 2015-01, Vol.2015 (2015), p.1-6 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A novel, nontoxic, simple, cost-effective and ecofriendly technique was used to synthesize green silver nanoparticles (AgNPs). The AgNPs were synthesized using orange peel extract as a reducing agent for silver nitrate salt (AgNO3). The particle size distribution of AgNPs was determined by Dynamic Light Scattering (DLS). The average size of silver nanoparticles was 98.43 nm. The stable dispersion of silver nanoparticles was added slowly to polystyrene solution in toluene maintaining the temperature at 70°C. The AgNPs/polystyrene (PS) nanocomposite solution was cast in a petri dish. The silver nanoparticles encapsulated within polymer chains were characterized by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) equipped with Energy Dispersive Spectroscopy (EDS) in addition to Transmission Electron Microscopy (TEM). The green AgNPs/PS nanocomposite film exhibited antimicrobial activity against Gram-negative bacteria Escherichia coli, Klebsiella pneumoniae and Salmonella, and Gram-positive bacteria Staphylococcus aureus. Thus, the key findings of the work include the use of a safe and simple AgNPs/PS nanocomposite which had a marked antibacterial activity which has a potential application in food packaging. |
---|---|
ISSN: | 1687-4110 1687-4129 |
DOI: | 10.1155/2015/943821 |