Finite element modeling of the WC–10wt.% Co thermal stresses: Build-up and phase specific strain response during cyclic loading

Several finite element models of the morphology of WC–10wt.% Co were employed to reproduce the build-up of thermal residual stresses as well as the phase specific strain during loading–unloading in compression. The different models differ only in their geometry of the interpenetrating skeletons of W...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of refractory metals & hard materials 2015-03, Vol.49, p.256-260
Hauptverfasser: Mari, D., Campitelli, E.N., Drake, E.F., Krawitz, A.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Several finite element models of the morphology of WC–10wt.% Co were employed to reproduce the build-up of thermal residual stresses as well as the phase specific strain during loading–unloading in compression. The different models differ only in their geometry of the interpenetrating skeletons of WC and Co. They all respect the given volume proportion of each phase. Thermoelasticity is considered for the brittle WC, while also plasticity is included to model the Co binder phase. We compare the predictions of our FEM models with phase specific strain measurements performed by in-situ neutron diffraction and discuss the model validation. •Neutron diffraction is used to measure residual thermal stresses and phase specific strains upon compression•FEM models are used to simulate phase specific strains. Validity of models with respect to experimental data is discussed•FEM model using a Co cubic inclusion into a WC Cube reproduce the general trends of phase specific strains•Tensile yield stress is readily attained above 1000 MPa in the transverse direction in Co and thermal stress is relaxed•FEM combined with neutron diffraction is a useful guideline to understand the specific phase mechanical properties in WC-Co
ISSN:0263-4368
2213-3917
DOI:10.1016/j.ijrmhm.2014.07.008