Generalized convexity in fuzzy vector optimization through a linear ordering

In this article we study efficiency and weakly efficiency in fuzzy vector optimization. After formulating the problem, we introduce two new concepts of generalized convexity for fuzzy vector mappings based on the generalized Hukuhara differentiability, pseudoinvexity-I and pseudoinvexity-II. We prov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences 2015-08, Vol.312, p.13-24
Hauptverfasser: Arana-Jiménez, M., Rufián-Lizana, A., Chalco-Cano, Y., Román-Flores, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article we study efficiency and weakly efficiency in fuzzy vector optimization. After formulating the problem, we introduce two new concepts of generalized convexity for fuzzy vector mappings based on the generalized Hukuhara differentiability, pseudoinvexity-I and pseudoinvexity-II. We prove that pseudoinvexity is the necessary and sufficient condition for a stationary point to be a solution of a fuzzy vector optimization problem. We give conditions to insure that a fuzzy vector mapping is invex and pseudoinvex (I and II). Moreover, we present some examples to illustrate the results. Lastly, we use these results to study the class of problems which have uncertainty and inaccuracies in the objective function coefficients of mathematical programming models.
ISSN:0020-0255
1872-6291
DOI:10.1016/j.ins.2015.03.045