Lung Nodule Classification in CT Thorax Images Using Support Vector Machines

In this paper a computational alternative to classify lung nodules using computed tomography (CT) thorax images is presented. The novelty of the method is the elimination of the segmentation stage. The contribution consist of several steps. After image acquisition, eight texture features were extrac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Madero Orozco, Hiram, Vergara Villegas, Osslan Osiris, De Jesus Ochoa Dominguez, Humberto, Cruz Sanchez, Vianey Guadalupe
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper a computational alternative to classify lung nodules using computed tomography (CT) thorax images is presented. The novelty of the method is the elimination of the segmentation stage. The contribution consist of several steps. After image acquisition, eight texture features were extracted from the histogram and the gray level coocurrence matrix (with four different angles) for each CT image. The features were used to train a non-parametric classifier called support vector machine (SVM), used to classify lung tissues into two classes: with lung nodules and without lung nodules. A total of 128 public clinical data set (ELCAP, NBIA) with different number of slices and diagnoses were used to train and evaluate the performance of the methodology presented. After the tests stage, five false negative (FN) and seven false positive (FP) results were obtained. The results obtained were validated by a radiologist to finally obtain a reliability index of 84%.
DOI:10.1109/MICAI.2013.38