Building a Belief-Desire-Intention Agent for Modeling Neural Networks
This article presents an innovative learning technique for modeling nonlinear systems. Our belief-desire-intention algorithm for neural networks can effectively identify the parameters of most relevance to a model for the online adjustment of weights, neurons, and layers. We present a detailed expla...
Gespeichert in:
Veröffentlicht in: | Applied artificial intelligence 2015-09, Vol.29 (8), p.753-765 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article presents an innovative learning technique for modeling nonlinear systems. Our belief-desire-intention algorithm for neural networks can effectively identify the parameters of most relevance to a model for the online adjustment of weights, neurons, and layers. We present a detailed explanation of each component in the proposed agent, and successfully apply our model to describe the lateral forces on a tire under a range of test conditions. The model output is compared to test data and the output of an existing neural network model. Our results demonstrate that the belief-desire-intention agent is reliable and applicable in nonlinear modeling and is superior to backpropagation neural networks. |
---|---|
ISSN: | 0883-9514 1087-6545 |
DOI: | 10.1080/08839514.2015.1071089 |