Building a Belief-Desire-Intention Agent for Modeling Neural Networks

This article presents an innovative learning technique for modeling nonlinear systems. Our belief-desire-intention algorithm for neural networks can effectively identify the parameters of most relevance to a model for the online adjustment of weights, neurons, and layers. We present a detailed expla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied artificial intelligence 2015-09, Vol.29 (8), p.753-765
Hauptverfasser: Chen, Huang, Long, Chen, Jiang, Hao-Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article presents an innovative learning technique for modeling nonlinear systems. Our belief-desire-intention algorithm for neural networks can effectively identify the parameters of most relevance to a model for the online adjustment of weights, neurons, and layers. We present a detailed explanation of each component in the proposed agent, and successfully apply our model to describe the lateral forces on a tire under a range of test conditions. The model output is compared to test data and the output of an existing neural network model. Our results demonstrate that the belief-desire-intention agent is reliable and applicable in nonlinear modeling and is superior to backpropagation neural networks.
ISSN:0883-9514
1087-6545
DOI:10.1080/08839514.2015.1071089