Two and three-dimensional graphene substrates to magnify osteogenic differentiation of periodontal ligament stem cells
Graphene can induce osteogenic differentiation of stem cells. However, the cellular mechanisms involved in this process remain unexplored. Our objective was to investigate key factors, in both genomic and protein level, involved in the osteogenic differentiation of periodontal ligament stem cells (P...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2015-11, Vol.93, p.266-275 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Graphene can induce osteogenic differentiation of stem cells. However, the cellular mechanisms involved in this process remain unexplored. Our objective was to investigate key factors, in both genomic and protein level, involved in the osteogenic differentiation of periodontal ligament stem cells (PDLSCs) in two and three-dimensional graphene substrates. PDLSC were seeded on glass slides (Gl); Gl coated with graphene (2DGp), three-dimensional graphene scaffold (3DGp) and polystyrene scaffold (PS) and cultured with and without osteogenic medium for 28days. All the substrates allowed stem cell survival and proliferation. 2DGp and 3DGp induced the differentiation of PDLSC into mature osteoblasts at higher levels as compared to Gl and PS. Bone-related gene and proteins (COL I, RUNX2, OCN) were upregulated on graphene regardless the use of osteogenic medium. The high expression of MHY10 and MHY10-V2 on 2DGp and 3DGp suggest that their physical characteristics may play a role in the enhanced differentiation. As the results were boosted by the use of osteogenic medium, we suggest that both chemical and physical properties of graphene act synergistically while ruling osteoblastic differentiation of PDLSC. |
---|---|
ISSN: | 0008-6223 1873-3891 |
DOI: | 10.1016/j.carbon.2015.05.071 |