Blood vessel extraction and optic disc removal using curvelet transform and kernel fuzzy c-means

Abstract This paper proposes an automatic blood vessel extraction method on retinal images using matched filtering in an integrated system design platform that involves curvelet transform and kernel based fuzzy c-means. Since curvelet transform represents the lines, the edges and the curvatures very...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2016-03, Vol.70, p.174-189
Hauptverfasser: Kar, Sudeshna Sil, Maity, Santi P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract This paper proposes an automatic blood vessel extraction method on retinal images using matched filtering in an integrated system design platform that involves curvelet transform and kernel based fuzzy c-means. Since curvelet transform represents the lines, the edges and the curvatures very well and in compact form (by less number of coefficients) compared to other multi-resolution techniques, this paper uses curvelet transform for enhancement of the retinal vasculature. Matched filtering is then used to intensify the blood vessels’ response which is further employed by kernel based fuzzy c-means algorithm that extracts the vessel silhouette from the background through non-linear mapping. For pathological images, in addition to matched filtering, Laplacian of Gaussian filter is also employed to distinguish the step and the ramp like signal from that of vessel structure. To test the efficacy of the proposed method, the algorithm has also been applied to images in presence of additive white Gaussian noise where the curvelet transform has been used for image denoising. Performance is evaluated on publicly available DRIVE, STARE and DIARETDB1 databases and is compared with the large number of existing blood vessel extraction methodologies. Simulation results demonstrate that the proposed method is very much efficient in detecting the long and the thick as well as the short and the thin vessels with an average accuracy of 96.16% for the DRIVE and 97.35% for the STARE database wherein the existing methods fail to extract the tiny and the thin vessels.
ISSN:0010-4825
1879-0534
DOI:10.1016/j.compbiomed.2015.12.018