Induction of neural tissue markers by micronized human spinal cord implants
The osteoinductive capacity of biological noncellular material has been widely recognized. Studies using bone morphogenetic proteins and acellular bone matrix demonstrate that host mesenchymal cells can be readily transformed into osteoprogenitor cells. The current study sought to determine whether...
Gespeichert in:
Veröffentlicht in: | Journal of neuroscience research 2015-03, Vol.93 (3), p.495-503 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The osteoinductive capacity of biological noncellular material has been widely recognized. Studies using bone morphogenetic proteins and acellular bone matrix demonstrate that host mesenchymal cells can be readily transformed into osteoprogenitor cells. The current study sought to determine whether another biological noncellular material, human spinal cord matrix, could induce transformation of host cells into a neural lineage. We demonstrate the formation of neural tissue and the expression of neural‐specific lineage markers in host cells colonizing implanted spinal cord fragments and adjacent tissue along with the lack of expression of nonneural lineage markers. These studies demonstrate that the inductive capacity of biological noncellular material is not limited to the osteogenic lineage and suggest that acellular spinal cord matrix could be used to generate host‐derived cells for use in neural repair and regeneration. © 2014 Wiley Periodicals, Inc. |
---|---|
ISSN: | 0360-4012 1097-4547 |
DOI: | 10.1002/jnr.23505 |