Effect of dynamic soil–bridge interaction modeling assumptions on the calculated seismic response of integral bridges

In this study, the effect of soil–structure modeling assumptions and simplifications on the seismic analyses results of integral bridges (IBs) is investigated. For this purpose, five structural models of IBs are built in decreasing levels of complexity starting from a nonlinear structural model incl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soil dynamics and earthquake engineering (1984) 2014-11, Vol.66, p.42-55
Hauptverfasser: Erhan, Semih, Dicleli, Murat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, the effect of soil–structure modeling assumptions and simplifications on the seismic analyses results of integral bridges (IBs) is investigated. For this purpose, five structural models of IBs are built in decreasing levels of complexity starting from a nonlinear structural model including close numerical simulation of the behavior of the foundation and backfill soil and gradually simplifying the model to a level where the effect of backfill and foundation soil is totally excluded. Nonlinear time history analyses of the modeled IBs are then conducted using a set of ground motions with various intensities representing small, medium and large intensity earthquakes. The analyses results are then used to assess the effect of modeling complexity level on the calculated seismic response of IBs. The nonlinear soil-bridge interaction modeling assumptions are found to have considerable effects on the calculated seismic response of IBs under medium and large intensity earthquakes. •The paper addresses an important problem that will benefit bridge design engineers.•The paper will guide bridge engineers when preparing a structural model.•Effect of different modeling techniques on the calculated seismic response is outlined.•The importance of detailed soil–structure interaction modeling is emphasized.
ISSN:0267-7261
1879-341X
DOI:10.1016/j.soildyn.2014.06.033