The real-time in vivo electrochemical measurement of nitric oxide and carbon monoxide release upon direct epidural electrical stimulation of the rat neocortex

This study reports real-time, in vivo functional measurement of nitric oxide (NO) and carbon monoxide (CO), two gaseous mediators in controlling cerebral blood flow. A dual electrochemical NO/CO microsensor enables us to probe the complex relationship between NO and CO in regulating cerebrovascular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analyst (London) 2015-05, Vol.140 (10), p.3415-3421
Hauptverfasser: Park, Sarah S, Hong, Minyoung, Ha, Yejin, Sim, Jeongeun, Jhon, Gil-Ja, Lee, Youngmi, Suh, Minah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study reports real-time, in vivo functional measurement of nitric oxide (NO) and carbon monoxide (CO), two gaseous mediators in controlling cerebral blood flow. A dual electrochemical NO/CO microsensor enables us to probe the complex relationship between NO and CO in regulating cerebrovascular tone. Utilizing this dual sensor, we monitor in vivo change of NO and CO simultaneously during direct epidural electrical stimulation of a living rat brain cortex. Both NO and CO respond quickly to meet physiological needs. The neural system instantaneously increases the released amounts of NO and CO to compensate the abrupt, yet transient hypoxia that results from epidural electrical stimulation. Intrinsic-signal optical imaging confirms that direct electrical stimulation elicits robust, dynamic changes in cerebral blood flow, which must accompany NO and CO signaling. The addition of l-arginine (a substrate for NO synthase, NOS) results in increased NO generation and decreased CO production compared to control stimulation. On the other hand, application of the NOS inhibitor, l-N(G)-nitroarginine methyl ester (l-NAME), results in decreased NO release but increased CO production of greater magnitude. This observation suggests that the interaction between NO and CO release is likely not linear and yet, they are tightly linked vasodilators.
ISSN:0003-2654
1364-5528
DOI:10.1039/c5an00122f