Repression of TIF1γ by SOX2 promotes TGF-β-induced epithelial–mesenchymal transition in non-small-cell lung cancer
TIF1γ is a novel regulator of transforming growth factor (TGF)-β/Smad signaling. Our previous studies show that dysregulated expression of transcriptional intermediary factor 1 γ (TIF1γ) and abnormal TGF-β/Smad signaling are implicated in non-small-cell lung cancer (NSCLC) separately. However, how T...
Gespeichert in:
Veröffentlicht in: | Oncogene 2016-02, Vol.35 (7), p.867-877 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | TIF1γ is a novel regulator of transforming growth factor (TGF)-β/Smad signaling. Our previous studies show that dysregulated expression of transcriptional intermediary factor 1 γ (TIF1γ) and abnormal TGF-β/Smad signaling are implicated in non-small-cell lung cancer (NSCLC) separately. However, how TIF1γ contributes to NSCLC by controlling TGF-β/Smad signaling is poorly understood. Here, we investigated the mechanistic role of TIF1γ in TGF-β-induced epithelial–mesenchymal transition (EMT), as well as a link between TIF1γ and SOX2 in NSCLC. We show that TIF1γ is a downstream target of SOX2 in NSCLC cells. SOX2 overexpression negatively regulated
TIF1γ
promoter activity and thereby attenuated
TIF1γ
mRNA and protein expression levels; SOX2 knockdown significantly enhanced
TIF1γ
promoter activity and augmented
TIF1γ
expression. Moreover,
TIF1γ
mRNA expression was downregulated in human NSCLC tissues and negatively correlated with SOX2 protein, which was upregulated in NSCLC tissues. Importantly, knockdown of TIF1γ or SOX2 overexpression augmented SMAD4 (human Mad (mothers against decapentaplegic)-related homologous protein 4)-dependent transcriptional responses, and enhanced TGF-β-induced EMT and human NSCLC cell invasion; knockdown of SOX2 impaired TGF-β-induced EMT and NSCLC cell invasion. In an
in vivo
model of metastasis, knockdown of TIF1γ promotes NSCLC cell metastasis. In addition, our data suggested that TIF1γ inhibited TGF-β-induced EMT through competing with SMAD4 in NSCLC cells. Taken together, our findings reveal a new mechanism by which SOX2-mediated transcription repression of TIF1γ promotes TGF-β-induced EMT in NSCLC. |
---|---|
ISSN: | 0950-9232 1476-5594 |
DOI: | 10.1038/onc.2015.141 |