Electrical Properties of Synthesized Large-Area MoS2 Field-Effect Transistors Fabricated with Inkjet-Printed Contacts
We report the electrical properties of synthesized large-area monolayer molybdenum disulfide (MoS2) field-effect transistors (FETs) with low-cost inkjet-printed Ag electrodes. The monolayer MoS2 film was grown by a chemical vapor deposition (CVD) method, and the top-contact Ag source/drain electrode...
Gespeichert in:
Veröffentlicht in: | ACS nano 2016-02, Vol.10 (2), p.2819-2826 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report the electrical properties of synthesized large-area monolayer molybdenum disulfide (MoS2) field-effect transistors (FETs) with low-cost inkjet-printed Ag electrodes. The monolayer MoS2 film was grown by a chemical vapor deposition (CVD) method, and the top-contact Ag source/drain electrodes (S/D) were deposited onto the films using a low-cost drop-on-demand inkjet-printing process without any masks and surface treatments. The electrical characteristics of FETs were comparable to those fabricated by conventional deposition methods such as photo- or electron beam lithography. The contact properties between the S/D and the semiconductor layer were also evaluated using the Y-function method and an analysis of the output characteristic at the low drain voltage regimes. Furthermore, the electrical instability under positive gate-bias stress was studied to investigate the charge-trapping mechanism of the FETs. CVD-grown large-area monolayer MoS2 FETs with inkjet-printed contacts may represent an attractive approach for realizing large-area and low-cost thin-film electronics. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.5b07942 |