Electrical Properties of Synthesized Large-Area MoS2 Field-Effect Transistors Fabricated with Inkjet-Printed Contacts

We report the electrical properties of synthesized large-area monolayer molybdenum disulfide (MoS2) field-effect transistors (FETs) with low-cost inkjet-printed Ag electrodes. The monolayer MoS2 film was grown by a chemical vapor deposition (CVD) method, and the top-contact Ag source/drain electrode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2016-02, Vol.10 (2), p.2819-2826
Hauptverfasser: Kim, Tae-Young, Amani, Matin, Ahn, Geun Ho, Song, Younggul, Javey, Ali, Chung, Seungjun, Lee, Takhee
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report the electrical properties of synthesized large-area monolayer molybdenum disulfide (MoS2) field-effect transistors (FETs) with low-cost inkjet-printed Ag electrodes. The monolayer MoS2 film was grown by a chemical vapor deposition (CVD) method, and the top-contact Ag source/drain electrodes (S/D) were deposited onto the films using a low-cost drop-on-demand inkjet-printing process without any masks and surface treatments. The electrical characteristics of FETs were comparable to those fabricated by conventional deposition methods such as photo- or electron beam lithography. The contact properties between the S/D and the semiconductor layer were also evaluated using the Y-function method and an analysis of the output characteristic at the low drain voltage regimes. Furthermore, the electrical instability under positive gate-bias stress was studied to investigate the charge-trapping mechanism of the FETs. CVD-grown large-area monolayer MoS2 FETs with inkjet-printed contacts may represent an attractive approach for realizing large-area and low-cost thin-film electronics.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.5b07942