Surface Engineering of Copper Foils for Growing Centimeter-Sized Single-Crystalline Graphene
The controlled growth of high-quality graphene on a large scale is of central importance for applications in electronics and optoelectronics. To minimize the adverse impacts of grain boundaries in large-area polycrystalline graphene, the synthesis of large single crystals of monolayer graphene is on...
Gespeichert in:
Veröffentlicht in: | ACS nano 2016-02, Vol.10 (2), p.2922-2929 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The controlled growth of high-quality graphene on a large scale is of central importance for applications in electronics and optoelectronics. To minimize the adverse impacts of grain boundaries in large-area polycrystalline graphene, the synthesis of large single crystals of monolayer graphene is one of the key challenges for graphene production. Here, we develop a facile surface-engineering method to grow large single-crystalline monolayer graphene by the passivation of the active sites and the control of graphene nucleation on copper surface using the melamine pretreatment. Centimeter-sized hexagonal single-crystal graphene domains were successfully grown, which exhibit ultrahigh carrier mobilities exceeding 25 000 cm2 V–1 s–1 and quantum Hall effects on SiO2 substrates. The underlying mechanism of melamine pretreatments were systematically investigated through elemental analyses of copper surface in the growth process of large single-crystals. This present work provides a surface design of a catalytic substrate for the controlled growth of large-area graphene single crystals. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.6b00041 |