Modeling the toxicity of chemicals to Tetrahymena pyriformis using molecular fragment descriptors and probabilistic neural networks

The results of an investigation into the use of a probabilistic neural network (PNN)-based methodology to model the 48-h ICG50 (inhibitory concentration for population growth) sublethal toxicity of 825 chemicals to the ciliate Tetrahymena pyriformis are presented. The information fed into the neural...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of environmental contamination and toxicology 2000-10, Vol.39 (3), p.289-298
Hauptverfasser: NICULESCU, S. P, KAISER, K. L. E, SCHULTZ, T. W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The results of an investigation into the use of a probabilistic neural network (PNN)-based methodology to model the 48-h ICG50 (inhibitory concentration for population growth) sublethal toxicity of 825 chemicals to the ciliate Tetrahymena pyriformis are presented. The information fed into the neural networks is solely based on simple molecular descriptors as can be derived from the chemical structure. In contrast to most other toxicological models, the octanol/water partition coefficient is not used as an input parameter, and no rules of thumb or other substance selection criteria are employed. The cross-validation and external validation experiments confirmed excellent recognitive and predictive capabilities of the resulting models and recommend their future use in evaluating the potential of most organic molecules to be toxic to Tetrahymena.
ISSN:0090-4341
1432-0703
DOI:10.1007/s002440010107