Harnessing QbD, Programming Languages, and Automation for Reproducible Biology

Building robust manufacturing processes from biological components is a task that is highly complex and requires sophisticated tools to describe processes, inputs, and measurements and administrate management of knowledge, data, and materials. We argue that for bioengineering to fully access biologi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Trends in biotechnology (Regular ed.) 2016-03, Vol.34 (3), p.214-227
Hauptverfasser: Sadowski, Michael I, Grant, Chris, Fell, Tim S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Building robust manufacturing processes from biological components is a task that is highly complex and requires sophisticated tools to describe processes, inputs, and measurements and administrate management of knowledge, data, and materials. We argue that for bioengineering to fully access biological potential, it will require application of statistically designed experiments to derive detailed empirical models of underlying systems. This requires execution of large-scale structured experimentation for which laboratory automation is necessary. This requires development of expressive, high-level languages that allow reusability of protocols, characterization of their reliability, and a change in focus from implementation details to functional properties. We review recent developments in these areas and identify what we believe is an exciting trend that promises to revolutionize biotechnology.
ISSN:0167-7799
1879-3096
DOI:10.1016/j.tibtech.2015.11.006