Controlled low-strength material using fly ash and AMD sludge

Controlled low-strength material (CLSM) is a cementitious material with properties similar to stabilized soil. After hardening, CLSM provides adequate strength in bearing capacity and support but can also be easily excavated. To be classified as a CLSM, the material must have a compressive strength...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2000-09, Vol.76 (2), p.251-263
Hauptverfasser: Gabr, M.A, Bowders, John J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Controlled low-strength material (CLSM) is a cementitious material with properties similar to stabilized soil. After hardening, CLSM provides adequate strength in bearing capacity and support but can also be easily excavated. To be classified as a CLSM, the material must have a compressive strength between 450 kPa (65 psi) and 8400 kPa (1200 psi). Typical CLSM contains coal-combustion fly ash (FA), cement, water and fine or coarse aggregate. In this paper, physical and strength properties of CLSM formed by combining sludge, a by-product from the treatment of acid mine drainage (AMD), with Class F FA are investigated. The sludge is a lime-based waste product that when combined with FA, exhibits self-hardening characteristics similar to cement. A main focus of this research is to develop a CLSM mix in which by-product material utilization is maximized while satisfying workability and performance requirements. A mixture of 10% AMD sludge, 2.5% Portland cement (PC), 87.5% Class F FA (dry wt.%) with water provided unconfined compressive strength values within the range for classification as CLSM. This mixture satisfies the excavatability and walkability requirements as well as the hardening time and stability criteria.
ISSN:0304-3894
1873-3336
DOI:10.1016/S0304-3894(00)00202-8