A radiation-controlled molecular switch for use in gene therapy of cancer
Ionising radiation induces the expression of a number of radiation-responsive genes and there is current interest in exploiting this to regulate the expression of exogenous therapeutic genes in gene therapy strategies for cancer. However, the radiation-responsive promoters used in these approaches a...
Gespeichert in:
Veröffentlicht in: | Gene therapy 2000-07, Vol.7 (13), p.1121-1125 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ionising radiation induces the expression of a number of radiation-responsive genes and there is current interest in exploiting this to regulate the expression of exogenous therapeutic genes in gene therapy strategies for cancer. However, the radiation-responsive promoters used in these approaches are often associated with low and transient levels of therapeutic gene expression. We describe here a novel radiation-triggered molecular switching device based on promoter elements from the radiation-responsive Egr-1 gene and the cre-LoxP site-specific recombination system of the P1 bacteriophage. Using this system, a single, minimally toxic dose of radiation induced cre-mediated excision of a lox-P flanked stop cassette in a silenced expression vector and this resulted in amplified levels of CMV-promoter-driven expression of the exogenous tumour-sensitising gene, HSV-tk. This strategy could be used in combination with targeted delivery and tumour-specific promoters to elicit the tumour-targeted and prolonged expression of a variety of tumour-sensitising genes and provide an unprecedented level of control and tumour selectivity. |
---|---|
ISSN: | 0969-7128 1476-5462 |
DOI: | 10.1038/sj.gt.3301223 |