Adsorption of Organic Compounds to Diesel Soot: Frontal Analysis and Polyparameter Linear Free-Energy Relationship
Black carbons (BCs) dominate the sorption of many hydrophobic organic compounds (HOCs) in soils and sediments, thereby reducing the HOCs’ mobilities and bioavailabilities. However, we do not have data for diverse HOCs’ sorption to BC because it is time-consuming and labor-intensive to obtain isother...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2016-01, Vol.50 (1), p.285-293 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 293 |
---|---|
container_issue | 1 |
container_start_page | 285 |
container_title | Environmental science & technology |
container_volume | 50 |
creator | Lu, Zhijiang MacFarlane, John K Gschwend, Philip M |
description | Black carbons (BCs) dominate the sorption of many hydrophobic organic compounds (HOCs) in soils and sediments, thereby reducing the HOCs’ mobilities and bioavailabilities. However, we do not have data for diverse HOCs’ sorption to BC because it is time-consuming and labor-intensive to obtain isotherms on soot and other BCs. In this study, we developed a frontal analysis chromatographic method to investigate the adsorption of 21 organic compounds with diverse functional groups to NIST diesel soot. This method was precise and time-efficient, typically taking only a few hours to obtain an isotherm. Based on 102 soot-carbon normalized sorption coefficients (K sootC) acquired at different sorbate concentrations, a sorbate-activity-dependent polyparameter linear free-energy relationship was established: log KsootC = (3.74 ± 0.11)V + ((−0.35 ± 0.02)log a i)E + (−0.62 ± 0.10)A + (−3.35 ± 0.11)B + (−1.45 ± 0.09); (N = 102, R 2 = 0.96, SE = 0.18), where V, E, A, and B are the sorbate’s McGowan’s characteristic volume, excess molar refraction, and hydrogen acidity and basicity, respectively; and a i is the sorbate’s aqueous activity reflecting the system’s approach to saturation. The difference in dispersive interactions with the soot versus with the water was the dominant factor encouraging adsorption, and H-bonding interactions discouraged this process. Using this relationship, soot–water and sediment–water or soil–water adsorption coefficients of HOCs of interest (PAHs and PCBs) were estimated and compared with the results reported in the literature. |
doi_str_mv | 10.1021/acs.est.5b03605 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1765982909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1754083945</sourcerecordid><originalsourceid>FETCH-LOGICAL-a431t-3dbd5b5ebb3fb816fe46214dbbf824c28b2efeec154a2c8c245560a6c33ebd0c3</originalsourceid><addsrcrecordid>eNqN0U1r3DAQBmBREppN0nNvRZBLIXij75V7W7abD1hIaVrozUjyOHWwJUeyD_vvY2e3DQQCOc3lmXdgXoQ-UzKnhNEL49IcUj-XlnBF5Ac0o5KRTGpJD9CMEMqznKs_R-g4pQdCCONEf0RHTEm9UELPUFyWKcSur4PHocK38d742uFVaLsw-DLhPuDvNSRo8F0I_Td8GYPvTYOX3jTbVCdsfIl_hGbbmWha6CHiTe3BxFECZGsP8X6Lf0Jjphvpb92dosPKNAk-7ecJ-n25_rW6zja3Vzer5SYzgtM-46UtpZVgLa-spqoCoRgVpbWVZsIxbRlUAI5KYZjTjgkpFTHKcQ62JI6foK-73C6Gx2H8UtHWyUHTGA9hSAVdKJlrlpP8HVQKonku5EjPXtGHMMTxGc9KMbYQbFIXO-ViSClCVXSxbk3cFpQUU3PF2Fwxbe-bGze-7HMH20L53_-ragTnOzBtvtx8I-4J8OClEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1756227425</pqid></control><display><type>article</type><title>Adsorption of Organic Compounds to Diesel Soot: Frontal Analysis and Polyparameter Linear Free-Energy Relationship</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Lu, Zhijiang ; MacFarlane, John K ; Gschwend, Philip M</creator><creatorcontrib>Lu, Zhijiang ; MacFarlane, John K ; Gschwend, Philip M</creatorcontrib><description>Black carbons (BCs) dominate the sorption of many hydrophobic organic compounds (HOCs) in soils and sediments, thereby reducing the HOCs’ mobilities and bioavailabilities. However, we do not have data for diverse HOCs’ sorption to BC because it is time-consuming and labor-intensive to obtain isotherms on soot and other BCs. In this study, we developed a frontal analysis chromatographic method to investigate the adsorption of 21 organic compounds with diverse functional groups to NIST diesel soot. This method was precise and time-efficient, typically taking only a few hours to obtain an isotherm. Based on 102 soot-carbon normalized sorption coefficients (K sootC) acquired at different sorbate concentrations, a sorbate-activity-dependent polyparameter linear free-energy relationship was established: log KsootC = (3.74 ± 0.11)V + ((−0.35 ± 0.02)log a i)E + (−0.62 ± 0.10)A + (−3.35 ± 0.11)B + (−1.45 ± 0.09); (N = 102, R 2 = 0.96, SE = 0.18), where V, E, A, and B are the sorbate’s McGowan’s characteristic volume, excess molar refraction, and hydrogen acidity and basicity, respectively; and a i is the sorbate’s aqueous activity reflecting the system’s approach to saturation. The difference in dispersive interactions with the soot versus with the water was the dominant factor encouraging adsorption, and H-bonding interactions discouraged this process. Using this relationship, soot–water and sediment–water or soil–water adsorption coefficients of HOCs of interest (PAHs and PCBs) were estimated and compared with the results reported in the literature.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.5b03605</identifier><identifier>PMID: 26587648</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adsorption ; Carbon - chemistry ; Chromatography ; Diesel fuels ; Hydrophobic and Hydrophilic Interactions ; Models, Theoretical ; Organic chemicals ; Organic Chemicals - chemistry ; Sediments ; Soil - chemistry ; Soot - chemistry ; Sorption ; Water - chemistry</subject><ispartof>Environmental science & technology, 2016-01, Vol.50 (1), p.285-293</ispartof><rights>Copyright © 2015 American Chemical Society</rights><rights>Copyright American Chemical Society Jan 5, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a431t-3dbd5b5ebb3fb816fe46214dbbf824c28b2efeec154a2c8c245560a6c33ebd0c3</citedby><cites>FETCH-LOGICAL-a431t-3dbd5b5ebb3fb816fe46214dbbf824c28b2efeec154a2c8c245560a6c33ebd0c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.5b03605$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.5b03605$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26587648$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Zhijiang</creatorcontrib><creatorcontrib>MacFarlane, John K</creatorcontrib><creatorcontrib>Gschwend, Philip M</creatorcontrib><title>Adsorption of Organic Compounds to Diesel Soot: Frontal Analysis and Polyparameter Linear Free-Energy Relationship</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Black carbons (BCs) dominate the sorption of many hydrophobic organic compounds (HOCs) in soils and sediments, thereby reducing the HOCs’ mobilities and bioavailabilities. However, we do not have data for diverse HOCs’ sorption to BC because it is time-consuming and labor-intensive to obtain isotherms on soot and other BCs. In this study, we developed a frontal analysis chromatographic method to investigate the adsorption of 21 organic compounds with diverse functional groups to NIST diesel soot. This method was precise and time-efficient, typically taking only a few hours to obtain an isotherm. Based on 102 soot-carbon normalized sorption coefficients (K sootC) acquired at different sorbate concentrations, a sorbate-activity-dependent polyparameter linear free-energy relationship was established: log KsootC = (3.74 ± 0.11)V + ((−0.35 ± 0.02)log a i)E + (−0.62 ± 0.10)A + (−3.35 ± 0.11)B + (−1.45 ± 0.09); (N = 102, R 2 = 0.96, SE = 0.18), where V, E, A, and B are the sorbate’s McGowan’s characteristic volume, excess molar refraction, and hydrogen acidity and basicity, respectively; and a i is the sorbate’s aqueous activity reflecting the system’s approach to saturation. The difference in dispersive interactions with the soot versus with the water was the dominant factor encouraging adsorption, and H-bonding interactions discouraged this process. Using this relationship, soot–water and sediment–water or soil–water adsorption coefficients of HOCs of interest (PAHs and PCBs) were estimated and compared with the results reported in the literature.</description><subject>Adsorption</subject><subject>Carbon - chemistry</subject><subject>Chromatography</subject><subject>Diesel fuels</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Models, Theoretical</subject><subject>Organic chemicals</subject><subject>Organic Chemicals - chemistry</subject><subject>Sediments</subject><subject>Soil - chemistry</subject><subject>Soot - chemistry</subject><subject>Sorption</subject><subject>Water - chemistry</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0U1r3DAQBmBREppN0nNvRZBLIXij75V7W7abD1hIaVrozUjyOHWwJUeyD_vvY2e3DQQCOc3lmXdgXoQ-UzKnhNEL49IcUj-XlnBF5Ac0o5KRTGpJD9CMEMqznKs_R-g4pQdCCONEf0RHTEm9UELPUFyWKcSur4PHocK38d742uFVaLsw-DLhPuDvNSRo8F0I_Td8GYPvTYOX3jTbVCdsfIl_hGbbmWha6CHiTe3BxFECZGsP8X6Lf0Jjphvpb92dosPKNAk-7ecJ-n25_rW6zja3Vzer5SYzgtM-46UtpZVgLa-spqoCoRgVpbWVZsIxbRlUAI5KYZjTjgkpFTHKcQ62JI6foK-73C6Gx2H8UtHWyUHTGA9hSAVdKJlrlpP8HVQKonku5EjPXtGHMMTxGc9KMbYQbFIXO-ViSClCVXSxbk3cFpQUU3PF2Fwxbe-bGze-7HMH20L53_-ragTnOzBtvtx8I-4J8OClEA</recordid><startdate>20160105</startdate><enddate>20160105</enddate><creator>Lu, Zhijiang</creator><creator>MacFarlane, John K</creator><creator>Gschwend, Philip M</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20160105</creationdate><title>Adsorption of Organic Compounds to Diesel Soot: Frontal Analysis and Polyparameter Linear Free-Energy Relationship</title><author>Lu, Zhijiang ; MacFarlane, John K ; Gschwend, Philip M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a431t-3dbd5b5ebb3fb816fe46214dbbf824c28b2efeec154a2c8c245560a6c33ebd0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adsorption</topic><topic>Carbon - chemistry</topic><topic>Chromatography</topic><topic>Diesel fuels</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Models, Theoretical</topic><topic>Organic chemicals</topic><topic>Organic Chemicals - chemistry</topic><topic>Sediments</topic><topic>Soil - chemistry</topic><topic>Soot - chemistry</topic><topic>Sorption</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Zhijiang</creatorcontrib><creatorcontrib>MacFarlane, John K</creatorcontrib><creatorcontrib>Gschwend, Philip M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Zhijiang</au><au>MacFarlane, John K</au><au>Gschwend, Philip M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adsorption of Organic Compounds to Diesel Soot: Frontal Analysis and Polyparameter Linear Free-Energy Relationship</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2016-01-05</date><risdate>2016</risdate><volume>50</volume><issue>1</issue><spage>285</spage><epage>293</epage><pages>285-293</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>Black carbons (BCs) dominate the sorption of many hydrophobic organic compounds (HOCs) in soils and sediments, thereby reducing the HOCs’ mobilities and bioavailabilities. However, we do not have data for diverse HOCs’ sorption to BC because it is time-consuming and labor-intensive to obtain isotherms on soot and other BCs. In this study, we developed a frontal analysis chromatographic method to investigate the adsorption of 21 organic compounds with diverse functional groups to NIST diesel soot. This method was precise and time-efficient, typically taking only a few hours to obtain an isotherm. Based on 102 soot-carbon normalized sorption coefficients (K sootC) acquired at different sorbate concentrations, a sorbate-activity-dependent polyparameter linear free-energy relationship was established: log KsootC = (3.74 ± 0.11)V + ((−0.35 ± 0.02)log a i)E + (−0.62 ± 0.10)A + (−3.35 ± 0.11)B + (−1.45 ± 0.09); (N = 102, R 2 = 0.96, SE = 0.18), where V, E, A, and B are the sorbate’s McGowan’s characteristic volume, excess molar refraction, and hydrogen acidity and basicity, respectively; and a i is the sorbate’s aqueous activity reflecting the system’s approach to saturation. The difference in dispersive interactions with the soot versus with the water was the dominant factor encouraging adsorption, and H-bonding interactions discouraged this process. Using this relationship, soot–water and sediment–water or soil–water adsorption coefficients of HOCs of interest (PAHs and PCBs) were estimated and compared with the results reported in the literature.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26587648</pmid><doi>10.1021/acs.est.5b03605</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2016-01, Vol.50 (1), p.285-293 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_1765982909 |
source | MEDLINE; American Chemical Society Journals |
subjects | Adsorption Carbon - chemistry Chromatography Diesel fuels Hydrophobic and Hydrophilic Interactions Models, Theoretical Organic chemicals Organic Chemicals - chemistry Sediments Soil - chemistry Soot - chemistry Sorption Water - chemistry |
title | Adsorption of Organic Compounds to Diesel Soot: Frontal Analysis and Polyparameter Linear Free-Energy Relationship |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A55%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adsorption%20of%20Organic%20Compounds%20to%20Diesel%20Soot:%20Frontal%20Analysis%20and%20Polyparameter%20Linear%20Free-Energy%20Relationship&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Lu,%20Zhijiang&rft.date=2016-01-05&rft.volume=50&rft.issue=1&rft.spage=285&rft.epage=293&rft.pages=285-293&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/acs.est.5b03605&rft_dat=%3Cproquest_cross%3E1754083945%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1756227425&rft_id=info:pmid/26587648&rfr_iscdi=true |