Adsorption of Organic Compounds to Diesel Soot: Frontal Analysis and Polyparameter Linear Free-Energy Relationship

Black carbons (BCs) dominate the sorption of many hydrophobic organic compounds (HOCs) in soils and sediments, thereby reducing the HOCs’ mobilities and bioavailabilities. However, we do not have data for diverse HOCs’ sorption to BC because it is time-consuming and labor-intensive to obtain isother...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2016-01, Vol.50 (1), p.285-293
Hauptverfasser: Lu, Zhijiang, MacFarlane, John K, Gschwend, Philip M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Black carbons (BCs) dominate the sorption of many hydrophobic organic compounds (HOCs) in soils and sediments, thereby reducing the HOCs’ mobilities and bioavailabilities. However, we do not have data for diverse HOCs’ sorption to BC because it is time-consuming and labor-intensive to obtain isotherms on soot and other BCs. In this study, we developed a frontal analysis chromatographic method to investigate the adsorption of 21 organic compounds with diverse functional groups to NIST diesel soot. This method was precise and time-efficient, typically taking only a few hours to obtain an isotherm. Based on 102 soot-carbon normalized sorption coefficients (K sootC) acquired at different sorbate concentrations, a sorbate-activity-dependent polyparameter linear free-energy relationship was established: log KsootC = (3.74 ± 0.11)V + ((−0.35 ± 0.02)log a i)E + (−0.62 ± 0.10)A + (−3.35 ± 0.11)B + (−1.45 ± 0.09); (N = 102, R 2 = 0.96, SE = 0.18), where V, E, A, and B are the sorbate’s McGowan’s characteristic volume, excess molar refraction, and hydrogen acidity and basicity, respectively; and a i is the sorbate’s aqueous activity reflecting the system’s approach to saturation. The difference in dispersive interactions with the soot versus with the water was the dominant factor encouraging adsorption, and H-bonding interactions discouraged this process. Using this relationship, soot–water and sediment–water or soil–water adsorption coefficients of HOCs of interest (PAHs and PCBs) were estimated and compared with the results reported in the literature.
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.5b03605