Communities of Cultivable Root Mycobionts of the Seagrass Posidonia oceanica in the Northwest Mediterranean Sea Are Dominated by a Hitherto Undescribed Pleosporalean Dark Septate Endophyte

Seagrasses, a small group of submerged marine macrophytes, were reported to lack mycorrhizae, i.e., the root-fungus symbioses most terrestrial plants use for nutrient uptake. On the other hand, several authors detected fungal endophytes in seagrass leaves, shoots, rhizomes, and roots, and an anatomi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbial ecology 2016-02, Vol.71 (2), p.442-451
Hauptverfasser: Vohník, Martin, Borovec, Ondřej, Kolařík, Miroslav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Seagrasses, a small group of submerged marine macrophytes, were reported to lack mycorrhizae, i.e., the root-fungus symbioses most terrestrial plants use for nutrient uptake. On the other hand, several authors detected fungal endophytes in seagrass leaves, shoots, rhizomes, and roots, and an anatomically and morphologically unique dark septate endophytic (DSE) association has been recently described in the roots of the Mediterranean seagrass Posidonia oceanica. Nevertheless, the global diversity of seagrass mycobionts is not well understood, and it remains unclear what fungus forms the DSE association in P. oceanica roots. We isolated and determined P. oceanica root mycobionts from 11 localities in the northwest Mediterranean Sea with documented presence of the DSE association and compared our results with recent literature. The mycobiont communities were low in diversity (only three species), were dominated by a single yet unreported marine fungal species (ca. 90 % of the total 177 isolates), and lacked common terrestrial and freshwater root mycobionts. Our phylogenetic analysis suggests that the dominating species represents a new monotypic lineage within the recently described Aigialaceae family (Pleosporales, Ascomycota), probably representing a new genus. Most of its examined colonies developed from intracellular microsclerotia occupying host hypodermis and resembling microsclerotia of terrestrial DSE fungi. Biological significance of this hitherto overlooked seagrass root mycobiont remains obscure, but its presence across the NW Mediterranean Sea and apparent root intracellular lifestyle indicate an intriguing symbiotic relationship with the dominant Mediterranean seagrass. Our microscopic observations suggest that it may form the DSE association recently described in P. oceanica roots.
ISSN:0095-3628
1432-184X
DOI:10.1007/s00248-015-0640-5