Penfluridol: An Antipsychotic Agent Suppresses Metastatic Tumor Growth in Triple-Negative Breast Cancer by Inhibiting Integrin Signaling Axis

Metastasis of breast cancer, especially to the brain, is the major cause of mortality. The inability of anticancer agents to cross the blood-brain-barrier represents a critical challenge for successful treatment. In the current study, we investigated the antimetastatic potential of penfluridol, an a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2016-02, Vol.76 (4), p.877-890
Hauptverfasser: Ranjan, Alok, Gupta, Parul, Srivastava, Sanjay K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Metastasis of breast cancer, especially to the brain, is the major cause of mortality. The inability of anticancer agents to cross the blood-brain-barrier represents a critical challenge for successful treatment. In the current study, we investigated the antimetastatic potential of penfluridol, an antipsychotic drug frequently prescribed for schizophrenia with anticancer activity. We show that penfluridol induced apoptosis and reduced the survival of several metastatic triple-negative breast cancer (TNBC) cell lines. In addition, penfluridol treatment significantly reduced the expression of integrin α6, integrin β4, Fak, paxillin, Rac1/2/3, and ROCK1 in vitro. We further evaluated the efficacy of penfluridol in three different in vivo tumor models. We demonstrate that penfluridol administration to an orthotopic model of breast cancer suppressed tumor growth by 49%. On the other hand, penfluridol treatment inhibited the growth of metastatic brain tumors introduced by intracardiac or intracranial injection of breast cancer cells by 90% and 72%, respectively. Penfluridol-treated tumors from all three models exhibited reduced integrin β4 and increased apoptosis. Moreover, chronic administration of penfluridol failed to elicit significant toxic or behavioral side effects in mice. Taken together, our results indicate that penfluridol effectively reduces the growth of primary TNBC tumors and especially metastatic growth in the brain by inhibiting integrin signaling, and prompt further preclinical investigation into repurposing penfluridol for the treatment of metastatic TNBC.
ISSN:0008-5472
1538-7445
DOI:10.1158/0008-5472.CAN-15-1233