Mitochondrial Dysfunction and Ca(2+) Overload Contributes to Hesperidin Induced Paraptosis in Hepatoblastoma Cells, HepG2

Paraptosis is a programmed cell death which is morphologically and biochemically different from apoptosis. In this study, we have investigated the role of Ca(2+) in hesperidin-induced paraptotic cell death in HepG2 cells. Increase in mitochondrial Ca(2+) level was observed in hesperidin treated HepG...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular physiology 2016-06, Vol.231 (6), p.1261-1268
Hauptverfasser: Yumnam, Silvia, Hong, Gyeong Eun, Raha, Suchismita, Saralamma, Venu Venkatarame Gowda, Lee, Ho Jeong, Lee, Won-Sup, Kim, Eun-Hee, Kim, Gon Sup
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Paraptosis is a programmed cell death which is morphologically and biochemically different from apoptosis. In this study, we have investigated the role of Ca(2+) in hesperidin-induced paraptotic cell death in HepG2 cells. Increase in mitochondrial Ca(2+) level was observed in hesperidin treated HepG2 cells but not in normal liver cancer cells. Inhibition of inositol-1,4,5-triphosphate receptor (IP3 R) and ryanodine receptor also block the mitochondrial Ca(2+) accumulation suggesting that the release of Ca(2+) from the endoplasmic reticulum (ER) may probably lead to the increase in mitochondrial Ca(2+) level. Pretreatment with ruthenium red (RuRed), a Ca(2+) uniporter inhibitor inhibited the hesperidin-induced mitochondrial Ca(2+) overload, swelling of mitochondria, and cell death in HepG2 cells. It has also been demonstrated that mitochondrial Ca(2+) influxes act upstream of ROS and mitochondrial superoxide production. The increased ROS production further leads to mitochondrial membrane loss in hesperidin treated HepG2 cells. Taken together our results show that IP3 R and ryanodine receptor mediated release of Ca(2+) from the ER and its subsequent influx through the uniporter into mitochondria contributes to hesperidin-induced paraptosis in HepG2 cells.
ISSN:1097-4652
DOI:10.1002/jcp.25222