Unveiling covariate inclusion structures in economic growth regressions using latent class analysis

We propose the use of Latent Class Analysis methods to analyze the covariate inclusion patterns across specifications resulting from Bayesian model averaging exercises. Using Dirichlet Process clustering, we are able to identify and describe dependency structures among variables in terms of inclusio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European economic review 2016-01, Vol.81, p.189-202
Hauptverfasser: Crespo Cuaresma, Jesus, Grün, Bettina, Hofmarcher, Paul, Humer, Stefan, Moser, Mathias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose the use of Latent Class Analysis methods to analyze the covariate inclusion patterns across specifications resulting from Bayesian model averaging exercises. Using Dirichlet Process clustering, we are able to identify and describe dependency structures among variables in terms of inclusion in the specifications that compose the model space. We apply the method to two datasets of potential determinants of economic growth. Clustering the posterior covariate inclusion structure of the model space formed by linear regression models reveals interesting patterns of complementarity and substitutability across economic growth determinants.
ISSN:0014-2921
1873-572X
DOI:10.1016/j.euroecorev.2015.03.009