Host-Sensitized NIR Quantum Cutting Emission in Nd(3+) Doped GdNbO4 Phosphors and Effect of Bi(3+) Ion Codoping
Host-sensitized near-infrared quantum cutting (QC) emission has been demonstrated in Nd(3+) doped Gd(1-x)Nd(x)NbO4 phosphors for various x values. Further, the effect of Bi(3+) ion addition as a sensitizer on near-infrared QC is studied in detail. X-ray diffraction confirms a monoclinic structure fo...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry 2016-02, Vol.55 (4), p.1535-1541 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Host-sensitized near-infrared quantum cutting (QC) emission has been demonstrated in Nd(3+) doped Gd(1-x)Nd(x)NbO4 phosphors for various x values. Further, the effect of Bi(3+) ion addition as a sensitizer on near-infrared QC is studied in detail. X-ray diffraction confirms a monoclinic structure for pure and Nd(3+) doped phosphors. Pulsed laser excitation at 266 nm of Gd(1-x)Nd(x)NbO4 and Gd(0.99-x)Nd(x)Bi(0.01)NbO4 causes efficient room-temperature energy transfer from the NbO4(3-) to the Nd(3+) ions and the NbO4(3-) and Bi(3+) ions to the Nd(3+) ions, respectively, which emits more than one near-infrared photon for single impinging ultraviolet photon. The emission band of Nd(3+) shows unusual character where the intensity of the (4)F(3/2)-(4)I(9/2) transition at 888 nm is higher than the intensity of the transition (4)F(3/2)-(4)I(11/2) at 1064 nm, due to energy transfer from GdNbO4 host to Nd(3+) ion. Using photoluminescence lifetime studies, the quantum cutting efficiencies are found to be the maximum 166% and 172% for Gd(0.95)Nd(0.05)NbO4 and Gd(0.94)Nd(0.05)Bi(0.01)NbO4, respectively. The present study could establish Nd(3+) ion as an alternative of Yb(3+) ion for near-infrared quantum cutting. This work facilitates the probing of Nd(3+) ions doped phosphor materials for next generation Si-solar cells. |
---|---|
ISSN: | 1520-510X |
DOI: | 10.1021/acs.inorgchem.5b02370 |