Mineralogical constraints on the determination of neutralization potential and prediction of acid mine drainage

Acid-base accounting tests, commonly used as a screening tool in acid mine drainage (AMD) predictions, have limitations in (1) measuring with confidence the amount of neutralizers present in samples and (2) affording an interpretation of what the test results mean in terms of predicting the occurren...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental geology (Berlin) 1999-12, Vol.39 (2), p.103-112
1. Verfasser: PAKTUNC, A. D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Acid-base accounting tests, commonly used as a screening tool in acid mine drainage (AMD) predictions, have limitations in (1) measuring with confidence the amount of neutralizers present in samples and (2) affording an interpretation of what the test results mean in terms of predicting the occurrence of acid mine drainage. Aside from the analytical difficulties inherent to the conventional methods, a potential source of error in neutralization potential (NP) measurements is the contribution from the dissolution of non-carbonate minerals. Non-carbonate alkalinity measured during static tests may or may not be available to neutralize acidity produced in the field. In order to assess the value-added of extending the NP with the knowledge of mineralogical composition and evaluate potential sources of errors in NP measurements, a suite of samples were examined and characterized in terms of their mineralogical and chemical compositions. The results indicate that although the acid-base accounting tests work well for simple compositions, the tests may result in overestimation or underestimation of NP values for field samples. Mineralogical constraint diagrams relating NP determinations to Ca, Mg and CO2 concentrations were developed with the purpose to serve as supplementary guides to conventional static tests in identifying possible NP contributions from non-carbonate minerals and checking the quality of the chemical testing results. Mineralogical NP makes it possible to interpret the meaning of NP results and to assess the behaviour of samples over time by predicting the onset of AMD and calculating NP values for individual size fractions.
ISSN:0943-0105
1432-0495
DOI:10.1007/s002540050440