Inkjet deposition of itraconazole onto poly(glycolic acid) microneedle arrays
Poly(glycolic acid) microneedle arrays were fabricated using a drawing lithography process; these arrays were modified with a drug release agent and an antifungal agent by piezoelectric inkjet printing. Coatings containing poly(methyl vinyl ether-co-maleic anhydride), a water-soluble drug release la...
Gespeichert in:
Veröffentlicht in: | Biointerphases 2016-03, Vol.11 (1), p.011008-011008 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Poly(glycolic acid) microneedle arrays were fabricated using a drawing lithography process; these arrays were modified with a drug release agent and an antifungal agent by piezoelectric inkjet printing. Coatings containing poly(methyl vinyl ether-co-maleic anhydride), a water-soluble drug release layer, and itraconazole (an antifungal agent), were applied to the microneedles by piezoelectric inkjet printing. Microscopic evaluation of the microneedles indicated that the modified microneedles contained the piezoelectric inkjet printing-deposited agents and that the surface coatings were released in porcine skin. Energy dispersive x-ray spectrometry aided in confirmation that the piezoelectric inkjet printing-deposited agents were successfully applied to the desired target areas of the microneedle surface. Fourier transform infrared spectroscopy was used to confirm the presence of the component materials in the piezoelectric inkjet printing-deposited material. Itraconazole-modified microneedle arrays incubated with agar plates containing Candida albicans cultures showed zones of growth inhibition. |
---|---|
ISSN: | 1934-8630 1559-4106 |
DOI: | 10.1116/1.4941448 |