Optimization of carboxymethyl chitosan synthesis using response surface methodology and desirability function
In this paper, chitosan was reacted with monochloroacetic acid under alkaline conditions to prepare carboxymethyl chitosan. A 23 full-factorial central composite design was applied to evaluate the effect of molar ratio sodium hydroxide (NaOH)/Chitosan (Ch), time and molar ratio monochloroacetic acid...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2016-04, Vol.85, p.615-624 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, chitosan was reacted with monochloroacetic acid under alkaline conditions to prepare carboxymethyl chitosan. A 23 full-factorial central composite design was applied to evaluate the effect of molar ratio sodium hydroxide (NaOH)/Chitosan (Ch), time and molar ratio monochloroacetic acid (MCA)/Chitosan (Ch) on the reaction yield and on the characteristics of carboxymethyl chitosan such as average degree of substitution (DS¯) and solubility. An optimization strategy based on response surface methodology was used together with the desirability function approach to optimize this process. The occurrence of carboxymethylation was evidenced by FTIR and 1H NMR spectroscopy. The optimum conditions for carboxymethylation process were found to be 12.4, 10.6h and 5 for molar ratio sodium hydroxide (NaOH)/Chitosan (Ch), time and molar ratio monochloroacetic acid (MCA)/Chitosan (Ch), respectively. Under these optimal conditions, it was possible to obtain carboxymethyl chitosan with DS¯ of 1.86 and solubility of 99.6%. X-ray diffraction and thermogravimetry analysis showed that crystallinity and thermal stability of derivatives was lower than chitosan and decreased with increase of DS¯. |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2016.01.017 |