Life history responses to irradiance at the early seedling stage of Picea omorika (Pančić) Purkyňe: adaptiveness and evolutionary limits
A multivariate selection analysis has been implemented for testing the adaptiveness of life history plasticity to irradiance during the seedling establishment in Picea omorika plants raised in a growth-room. Siblings of a synthetic population comprising 21 families from six natural populations were...
Gespeichert in:
Veröffentlicht in: | Acta oecologica (Montrouge) 2005-05, Vol.27 (3), p.185-195 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A multivariate selection analysis has been implemented for testing the adaptiveness of life history plasticity to irradiance during the seedling establishment in
Picea omorika plants raised in a growth-room. Siblings of a synthetic population comprising 21 families from six natural populations were exposed to contrasting light levels to explore variation in phenotypic expression of three seedling traits: days from germination to cotyledon opening (DGTOC), days from cotyledon opening to epicotyl appearance (DCTOE), and epicotyl length at 6 weeks (EPL6). Ambient light conditions significantly affected DCTOE and EPL6, but not DGTOC. Phenotypic selection analysis revealed that DGTOC was under negative directional selection in both radiation environments, suggesting that canalization of DGTOC was promoted across different light conditions, as well as that the observed pattern of canalization might be regarded as adaptive. DCTOE was also found to be under negative directional selection in both light treatments, but the plastic responses of this trait were opposite to the values favoured by selection within environments. Since there was evidence for selection against plasticity in DCTOE, the pattern of plastic responses in DCTOE to variation in light conditions could be diagnosed as maladaptive. Multiple regression analysis revealed a cost of canalization in DGTOC regardless of light environment, as well as a cost of plasticity in DCTOE under high light intensity. All genetic correlations across light environments were significantly different from unity, indicating the existence of heritable variation for plasticity in these traits. However, since DGTOC and DCTOE were involved in a genetic trade-off with respect to both trait mean and plasticity, these early life histories would never reach their optimal values across radiation environments. |
---|---|
ISSN: | 1146-609X 1873-6238 |
DOI: | 10.1016/j.actao.2004.12.004 |