A polarized delta-four-stream approximation for infrared and microwave radiative transfer: Part I

The delta-four-stream polarized (vector) thermal radiative transfer has been formulated and numerically tested specifically for application to satellite data assimilation in cloudy atmospheres. It is shown that for thermal emission in the earth’s atmosphere, the [I, Q] component of the Stokes vector...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the atmospheric sciences 2005-07, Vol.62 (7), p.2542-2554
Hauptverfasser: LIOU, K. N, OU, S. C, TAKANO, Y, LIU, Q
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The delta-four-stream polarized (vector) thermal radiative transfer has been formulated and numerically tested specifically for application to satellite data assimilation in cloudy atmospheres. It is shown that for thermal emission in the earth’s atmosphere, the [I, Q] component of the Stokes vector can be decoupled from the [U, V] component and that the solution of the vector equation set involving the four-stream approximation can be expressed in an analytic form similar to the scalar case. Thus, the computer time requirement can be optimized for the simulation of forward radiances and their derivatives. Computations have been carried out to illustrate the accuracy and efficiency of this method by comparing radiance and polarization results to those computed from the exact doubling method for radiative transfer for a number of thermal infrared and microwave frequencies. Excellent agreement within 1% is shown for the radiance results for all satellite viewing angles and cloud optical depths. For polarization, differences between the two are less than 5% if brightness temperature is used in the analysis. On balance of the computational speed and accuracy, the four-stream approximation for radiative transfer appears to be an attractive means for the simulation of cloudy radiances and polarization for research and data assimilation purposes.
ISSN:0022-4928
1520-0469
DOI:10.1175/jas3476.1