The impact of physiological oxygen during culture, and vitrification for cryopreservation, on the outcome of extended culture in human IVF

Abstract Extended culture has facilitated the move to single blastocyst transfer, resulting in significant increases in implantation and live birth rate, while concomitantly reducing fetal loss during pregnancy. However, concerns have been raised regarding subsequent neo-natal outcomes following ext...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reproductive biomedicine online 2016-02, Vol.32 (2), p.137-141
1. Verfasser: Gardner, David K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Extended culture has facilitated the move to single blastocyst transfer, resulting in significant increases in implantation and live birth rate, while concomitantly reducing fetal loss during pregnancy. However, concerns have been raised regarding subsequent neo-natal outcomes following extended culture. Analysis of the literature reveals differences in outcomes according to geographical region and between individual clinics. A common factor amongst reports of potentially adverse outcomes following blastocyst transfer appears to be that atmospheric (~20%) oxygen was typically employed for embryo culture. Clinics and countries utilizing physiological concentrations of oxygen (~5%) have not reported adverse perinatal outcomes with blastocyst transfer. Atmospheric oxygen imposes significant negative effects upon the embryo's molecular and cellular physiology, and further it increases the sensitivity of the preimplantation embryo to other stressors in the laboratory. With the recent adoption of vitrification for blastocyst cryopreservation, cumulative pregnancy rates per cycle with extended culture will increase significantly. Consequently, rather than perceiving extended culture as a potentially negative procedure, it is concluded that neo-natal data need to be interpreted in light of the conditions used to culture and cryopreserve blastocysts, and that furthermore a policy of embryo culture using 20% oxygen can no longer be justified.
ISSN:1472-6483
1472-6491
DOI:10.1016/j.rbmo.2015.11.008