The effect of riboflavin and ultraviolet light on the infectivity of arboviruses
Background Arboviruses are an emerging threat to transfusion safety and rates of infection are likely to increase with the increased rainfall associated with climate change. Arboviral infections are common in Australia, where Ross River virus (RRV), Barmah Forest virus (BFV), and Murray Valley encep...
Gespeichert in:
Veröffentlicht in: | Transfusion (Philadelphia, Pa.) Pa.), 2015-04, Vol.55 (4), p.824-831 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background
Arboviruses are an emerging threat to transfusion safety and rates of infection are likely to increase with the increased rainfall associated with climate change. Arboviral infections are common in Australia, where Ross River virus (RRV), Barmah Forest virus (BFV), and Murray Valley encephalitis virus (MVEV), among others, have the potential to cause disease in humans. The use of pathogen reduction technology (PRT) may be an alternative approach for blood services to manage the risk of arboviral transfusion transmission. In this study, the effectiveness of the Mirasol PRT (Terumo BCT) system at inactivating RRV, BFV, and MVEV in buffy coat (BC)‐derived platelets (PLTs) was investigated.
Study Design and Methods
BC‐derived PLT concentrates in additive solution (SSP+) were spiked with RRV, BFV, or MVEV and then treated with the Mirasol PRT system. The level of infectious virus was determined before and after treatment, and the reduction in viral infectivity was calculated.
Results
Treatment with PRT (Mirasol) reduced the amount of infectious virus of all three arboviruses. The greatest level of inactivation was observed for RRV (2.33 log; 99.25%), followed by BFV (1.97 log; 98.68%) and then MVEV (1.83 log; 98.42%).
Conclusion
Our study demonstrates that treatment of PLT concentrates with PRT (Mirasol) reduces the infectious levels of RRV, BFV, and MVEV. The relevance of the level of reduction required to prevent disease transmission by transfusion has not been fully defined and requires further investigation. In the face of a changing climate, with its associated threat to blood safety, PRT represents a proactive approach for maintaining blood safety. |
---|---|
ISSN: | 0041-1132 1537-2995 |
DOI: | 10.1111/trf.12899 |