Temozolomide sensitizes stem-like cells of glioma spheres to TRAIL-induced apoptosis via upregulation of casitas B-lineage lymphoma (c-Cbl) protein

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has potent antitumor effects in glioma cell lines but has shown little clinical benefit for patients. We investigated whether the widely used chemotherapeutic agent temozolomide (TMZ) can sensitize glioma stem-like cells (GSCs) from hum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tumor biology 2015-12, Vol.36 (12), p.9621-9630
Hauptverfasser: Zhitao, Jing, Long, Li, Jia, Liu, Yunchao, Ban, Anhua, Wu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has potent antitumor effects in glioma cell lines but has shown little clinical benefit for patients. We investigated whether the widely used chemotherapeutic agent temozolomide (TMZ) can sensitize glioma stem-like cells (GSCs) from human glioblastoma multiforme (GBM) to TRAIL-induced apoptosis. GSCs were isolated from GBM, and stem cell properties were confirmed by immunocytochemistry and in vivo tumorigenicity. Primary GSCs (PGCs) were produced by serum treatment of GBM-derived cells. Changes in expression levels of various TRAIL-related signaling factors before and after TRAIL or TRAIL + TMZ treatment were measured by Western blotting. Overexpression vectors and siRNAs were used to investigate mechanism of TRAIL sensitivity. GSCs showed greater resistance to TRAIL-induced apoptosis than PGCs and had lower basal caspase activity. Caspase knockdown in PGCs reduced TRAIL sensitivity. Expression levels of c-Fas-associated death domain-like interleukin 1-converting enzyme-like inhibitory protein long and short isoforms (c-FLIP L and c-FLIP S ) were significantly higher in GSCs than PGCs, and siRNA-mediated c-FLIP knockdown in GSCs enhanced TRAIL-induced apoptosis. TMZ enhanced TRAIL-induced apoptosis in GSCs and downregulated c-FLIP expression. Add of TMZ also upregulated the expression of the E3 ubiquitin ligase casitas B-lineage lymphoma (c-Cbl). Moreover, overexpression of c-Cbl alone reduced c-FLIP expression, and c-Cbl knockdown both enhanced c-FLIP expression and reduced the potentiating effect of TMZ on TRAIL-induced apoptosis. The result indicated that TMZ may overcome TRAIL resistance in GSCs by suppressing c-FLIP expression through c-Cbl-mediated ubiquitination and degradation.
ISSN:1010-4283
1423-0380
DOI:10.1007/s13277-015-3720-8