Effect of a microbiota activator on accumulated ammonium and microbial community structure in a pilot-scale membrane bioreactor
Microbiota activators (MAs) have been used to improve the reactor performances of biological wastewater treatment processes. In this study, to remove ammonium (NH4+) accumulated during the pre-operation of a pilot-scale membrane bioreactor (MBR) under high-organic-loading conditions, an MA was added...
Gespeichert in:
Veröffentlicht in: | Journal of general and applied microbiology 2015/08/31, Vol.61(4), pp.132-138 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microbiota activators (MAs) have been used to improve the reactor performances of biological wastewater treatment processes. In this study, to remove ammonium (NH4+) accumulated during the pre-operation of a pilot-scale membrane bioreactor (MBR) under high-organic-loading conditions, an MA was added to the MBR system and the resulting changes in reactor performances and microbial communities were monitored for 12 days. The NH4+ concentrations in the sludge and effluent decreased (from 427 to 246 mg/L in the sludge (days 1–9)), and mixed liquor suspended solid increased (from 6,793 to 11,283 mg/L (days 1–12)) after the addition of MA. High-throughput Illumina sequencing of 16S rRNA genes revealed that the microbial community structure changed along with the NH4+ removal resulting from the MA addition. In particular, the relative abundance of an Acidovorax-related operational taxonomic unit (OTU) increased significantly, accounting for approximately 50% of the total microbial population at day 11. In contrast, the ammonia-oxidizing bacteria and archaea showed low abundances ( |
---|---|
ISSN: | 0022-1260 1349-8037 |
DOI: | 10.2323/jgam.61.132 |