Antimicrobial and Anti-biofilm Activity of Thiourea Derivatives Incorporating a 2-Aminothiazole Scaffold
A series of new thiourea derivatives of 1,3-thiazole have been synthesized. All obtained compounds were tested in vitro against a number of microorganisms, including Gram-positive cocci, Gram-negative rods and Candida albicans. Compounds were also tested for their in vitro tuberculostatic activity a...
Gespeichert in:
Veröffentlicht in: | Chemical & pharmaceutical bulletin 2015/03/01, Vol.63(3), pp.225-236 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A series of new thiourea derivatives of 1,3-thiazole have been synthesized. All obtained compounds were tested in vitro against a number of microorganisms, including Gram-positive cocci, Gram-negative rods and Candida albicans. Compounds were also tested for their in vitro tuberculostatic activity against the Mycobacterium tuberculosis H37Rv strain, as well as two ‘wild’ strains isolated from tuberculosis patients. Compounds 3 and 9 showed significant inhibition against Gram-positive cocci (standard strains and hospital strain). The range of MIC values is 2–32 µg/mL. Products 3 and 9 effectively inhibited the biofilm formation of both methicillin-resistant and standard strains of S. epidermidis. The halogen atom, especially at the 3rd position of the phenyl group, is significantly important for this antimicrobial activity. Moreover, all obtained compounds resulted in cytotoxicity and antiviral activity on a large set of DNA and RNA viruses, including Human Immunodeficiency Virus type 1 (HIV-1) and other several important human pathogens. Compound 4 showed activity against HIV-1 and Coxsackievirus type B5. Seven compounds resulted in cytotoxicity against MT-4 cells (CC50 |
---|---|
ISSN: | 0009-2363 1347-5223 |
DOI: | 10.1248/cpb.c14-00837 |