Synthesis and in Vitro Evaluation of the Antitubercular and Antibacterial Activity of Novel Oxazolidinones Bearing Octahydrocyclopenta[c]pyrrol-2-yl Moieties

A novel series of oxazolidinone-class antimicrobial agents with 5-substituted octahydrocyclopenta[c]pyrrole moieties at the C-ring of linezolid and an acetamide or 1,2,3-triazole ring as the C-5 side chain of the oxazolidinone ring were prepared. The resulting series of compounds were evaluated for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical & pharmaceutical bulletin 2014/12/01, Vol.62(12), pp.1214-1224
Hauptverfasser: Bhattarai, Deepak, Lee, Ju-hyeon, Seo, Seon Hee, Nam, Ghilsoo, Choo, Hyunah, Kang, Soon Bang, Kwak, Jin-Hwan, Oh, Taegwon, Cho, Sang-Nae, Pae, Ae Nim, Kim, Eunice Eunkyeong, Jeong, Nakcheol, Keum, Gyochang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel series of oxazolidinone-class antimicrobial agents with 5-substituted octahydrocyclopenta[c]pyrrole moieties at the C-ring of linezolid and an acetamide or 1,2,3-triazole ring as the C-5 side chain of the oxazolidinone ring were prepared. The resulting series of compounds were evaluated for in vitro antimicrobial activity against Mycobacterium tuberculosis and a panel of clinically important resistant Gram-positive and -negative bacteria. Among them, endo-alcohol 2a and exo-alcohol 2b showed potent inhibitory activity against M. tuberculosis H37Rv, which was superior to that of linezolid. Several analogues in this series showed potent in vitro antibacterial activity against the clinically important vancomycin-resistant bacteria and showed similar or better potency against linezolid-resistant methicillin-resistant Staphylococcus aureus (MRSA) strains. The hydroxyl group in the azabicyclic C-ring interacted with the same hydrophobic pocket as linezolid based on a docking study. Selected compounds with high antimicrobial activity showed good human microsomal stability and low CYP isozyme and monoamine oxidase (MAO) inhibition.
ISSN:0009-2363
1347-5223
DOI:10.1248/cpb.c14-00510