Underwater depth imaging using time-correlated single-photon counting
A depth imaging system, based on the time-of-flight approach and the time-correlated single-photon counting (TCSPC) technique, was investigated for use in highly scattering underwater environments. The system comprised a pulsed supercontinuum laser source, a monostatic scanning transceiver, with a s...
Gespeichert in:
Veröffentlicht in: | Optics express 2015-12, Vol.23 (26), p.33911-33926 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A depth imaging system, based on the time-of-flight approach and the time-correlated single-photon counting (TCSPC) technique, was investigated for use in highly scattering underwater environments. The system comprised a pulsed supercontinuum laser source, a monostatic scanning transceiver, with a silicon single-photon avalanche diode (SPAD) used for detection of the returned optical signal. Depth images were acquired in the laboratory at stand-off distances of up to 8 attenuation lengths, using per-pixel acquisition times in the range 0.5 to 100 ms, at average optical powers in the range 0.8 nW to 950 μW. In parallel, a LiDAR model was developed and validated using experimental data. The model can be used to estimate the performance of the system under a variety of scattering conditions and system parameters. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.23.033911 |