Resonant absorption and amplification of circularly-polarized waves in inhomogeneous chiral media
It has been found that in the media where the dielectric permittivity ε or the magnetic permeability μ is near zero and in transition metamaterials where ε or μ changes from positive to negative values, there occur a strong absorption or amplification of the electromagnetic wave energy in the presen...
Gespeichert in:
Veröffentlicht in: | Optics express 2016-01, Vol.24 (2), p.1794-1803 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It has been found that in the media where the dielectric permittivity ε or the magnetic permeability μ is near zero and in transition metamaterials where ε or μ changes from positive to negative values, there occur a strong absorption or amplification of the electromagnetic wave energy in the presence of an infinitesimally small damping or gain and a strong enhancement of the electromagnetic fields. We attribute these phenomena to the mode conversion of transverse electromagnetic waves into longitudinal plasma oscillations and its inverse process. In this paper, we study analogous phenomena occurring in chiral media theoretically using the invariant imbedding method. In uniform isotropic chiral media, right-circularly-polarized and left-circularly-polarized waves are the eigen-modes of propagation with different effective refractive indices n(+) and n(-), whereas in the chiral media with a nonuniform impedance variation, they are no longer the eigenmodes and are coupled to each other. We find that both in uniform chiral slabs where either n(+) or n(-) is near zero and in chiral transition metamaterials where n(+) or n(-) changes from positive to negative values, a strong absorption or amplification of circularly-polarized waves occurs in the presence of an infinitesimally small damping or gain. We present detailed calculations of the mode conversion coefficient, which measures the fraction of the electromagnetic wave energy absorbed into the medium, for various configurations of ε and μ with an emphasis on the influence of a nonuniform impedance. We propose possible applications of these phenomena to linear and nonlinear optical devices that react selectively to the helicity of the circular polarization. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.24.001794 |