Formation of Edge Crack in 1.4%Si Non-oriented Electrical Steel during Hot Rolling

Microstructure evolution, dynamic recrystallization, high temperature oxidation and hot ductility of 1.4 % Si non-oriented electrical steel sheets were investigated to reduce edge cracking. The causes of cracking were found to be coarse as-cast microstructure, grain boundary oxidation in reheating f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of iron and steel research, international international, 2014-02, Vol.21 (2), p.269-274
Hauptverfasser: CHEN, Ai-hua, GUO, Hai-rong, LI, Hua-long, EMI, Toshihiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microstructure evolution, dynamic recrystallization, high temperature oxidation and hot ductility of 1.4 % Si non-oriented electrical steel sheets were investigated to reduce edge cracking. The causes of cracking were found to be coarse as-cast microstructure, grain boundary oxidation in reheating furnace, lack of dynamic recrystallization during hot rolling and increase of temperature, resulting in reduced hot ductility in strip edge region. Countermeas- ures against the edge crack are proposed accordingly. Lowering reheating temperature and reducing holding time re- duced oxidation and decarburization. Hot charging temperature was increased to decrease reheating temperature. And using an edger can refine microstructure in strip edge region. Finally, edge heater can be added to increase edge re- gion formability by inducing dynamic reerystallization and ductility by increasing temperature.
ISSN:1006-706X
2210-3988
DOI:10.1016/S1006-706X(14)60041-8