Novel Folded-PCA for improved feature extraction and data reduction with hyperspectral imaging and SAR in remote sensing

As a widely used approach for feature extraction and data reduction, Principal Components Analysis (PCA) suffers from high computational cost, large memory requirement and low efficacy in dealing with large dimensional datasets such as Hyperspectral Imaging (HSI). Consequently, a novel Folded-PCA is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISPRS journal of photogrammetry and remote sensing 2014-07, Vol.93, p.112-122
Hauptverfasser: Zabalza, Jaime, Ren, Jinchang, Yang, Mingqiang, Zhang, Yi, Wang, Jun, Marshall, Stephen, Han, Junwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As a widely used approach for feature extraction and data reduction, Principal Components Analysis (PCA) suffers from high computational cost, large memory requirement and low efficacy in dealing with large dimensional datasets such as Hyperspectral Imaging (HSI). Consequently, a novel Folded-PCA is proposed, where the spectral vector is folded into a matrix to allow the covariance matrix to be determined more efficiently. With this matrix-based representation, both global and local structures are extracted to provide additional information for data classification. Moreover, both the computational cost and the memory requirement have been significantly reduced. Using Support Vector Machine (SVM) for classification on two well-known HSI datasets and one Synthetic Aperture Radar (SAR) dataset in remote sensing, quantitative results are generated for objective evaluations. Comprehensive results have indicated that the proposed Folded-PCA approach not only outperforms the conventional PCA but also the baseline approach where the whole feature sets are used.
ISSN:0924-2716
1872-8235
DOI:10.1016/j.isprsjprs.2014.04.006