A Novel Improved ELM Algorithm for a RealIndustrial Application
It is well known that the feedforward neural networks meet numbers of difficulties in the applications because of its slow learning speed. The extreme learning machine (ELM) is a new single hidden layer feedforward neural network method aiming at improving the training speed. Nowadays ELM algorithm...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2014-01, Vol.2014 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is well known that the feedforward neural networks meet numbers of difficulties in the applications because of its slow learning speed. The extreme learning machine (ELM) is a new single hidden layer feedforward neural network method aiming at improving the training speed. Nowadays ELM algorithm has received wide application with its good generalization performance under fast learning speed. However, there are still several problems needed to be solved in ELM. In this paper, a new improved ELM algorithm named R-ELM is proposed to handle the multicollinear problem appearing in calculation of the ELM algorithm. The proposed algorithm is employed in bearing fault detection using stator current monitoring. Simulative results show that R-ELM algorithm has better stability and generalization performance compared with the original ELM and the other neural network methods. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2014/824765 |