Carbon nanotubes/amorphous carbon composites as high-power negative electrodes in lithium ion capacitors
A nitrogen-rich carbon nanotubes/amorphous carbon (CNT/C) composite was prepared by carbonising a CNT/polyaniline (PANI) composite, and characterised. Scanning electron microscopy and X-ray photoelectron spectroscopy confirmed that the composite retained a mesoporous CNT structure as its backbone, w...
Gespeichert in:
Veröffentlicht in: | Journal of applied electrochemistry 2014, Vol.44 (1), p.105-113 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A nitrogen-rich carbon nanotubes/amorphous carbon (CNT/C) composite was prepared by carbonising a CNT/polyaniline (PANI) composite, and characterised. Scanning electron microscopy and X-ray photoelectron spectroscopy confirmed that the composite retained a mesoporous CNT structure as its backbone, whilst the nitrogen-rich PANI-derived carbon formed a thin amorphous coating on the CNT surface. Electrochemical characterisation of the CNT/C composite indicated that it had nearly double the reversible Li
+
intercalation capacity (390 vs. 219 mAh g
−1
) and 39 % less irreversible capacity (622 vs. 1,015 mAh g
−1
) than the pristine CNT. The CNT/C composite showed exceptionally high rate capability with a de-intercalation capacity of 81 mAh g
−1
at a very high charge/discharge rate of 60 C (time taken for charge or discharge is 1 min) (1 C = 1 h charge or discharge), whereas the pristine CNT delivered 53 mAh g
−1
at this C-rate. By comparison, the rate capabilities of conventional graphite (N3 and SLP30) were very poor above 5 C (~17 mAh g
−1
at 5 C). Both the pristine CNT and CNT/C composite showed an excellent cyclability at 1 C charge/discharge over 600 cycles. The CNT/C composite maintained a fairly stable capacity of ~200 mAh g
−1
after 600 cycles, whilst the commercial graphite showed a steady and significant decrease in de-intercalation capacity; reaching |
---|---|
ISSN: | 0021-891X 1572-8838 |
DOI: | 10.1007/s10800-013-0606-6 |