Effect of Heat Treatment Process on Mechanical Properties and Microstructure of Modified CNS-Ⅱ F/M Steel
Ferritic/martensitic(F/M) steels have been recommended as one of the candidate materials for supercritical water cooled reactor(SCWR) in-core components use for its high thermal conductivity,low thermal expansion coefficient and inherently good dimensional stability under irradiation condition in co...
Gespeichert in:
Veröffentlicht in: | Journal of iron and steel research, international international, 2011-12, Vol.18 (12), p.65-70 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ferritic/martensitic(F/M) steels have been recommended as one of the candidate materials for supercritical water cooled reactor(SCWR) in-core components use for its high thermal conductivity,low thermal expansion coefficient and inherently good dimensional stability under irradiation condition in comparison to austenitic steel.CNS-Ⅱ F/M steel which has good mechanical properties was one of the 9-12Cr F/M steels designed for SCWR in the previous work.In this study a modified CNS-Ⅱ F/M steel was used and it's ultimate tensile strength was 925 MPa at room temperature and 483 MPa at 600 ℃ after optimizing heat treatment parameter.The ductile to brittle transition temperature of modified CNS-Ⅱ F/M steel is-55 ℃.Those are at the same level or even higher than that of CNS-Ⅱ and some commercial F/M steels nominated for SCWR in-core component use.The transmission electron microscope(TEM) results showed that the mechanical properties of the tempered martensite was closely related to the decomposition stage of the martensite. |
---|---|
ISSN: | 1006-706X 2210-3988 |
DOI: | 10.1016/S1006-706X(12)60011-9 |