Two interannual variability modes of the Northwestern Pacific Subtropical Anticyclone in boreal summer

Using the reanalysis data and 20th century simulation of coupled model FGOALS_gl developed by LASG/IAP, we identified two distinct interannual modes of Northwestern Pacific Subtropical Anticyclone (NWPAC) by performing Empirical Orthogonal Function (EOF) analysis on 850 hPa wind field over the north...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Earth sciences 2013-07, Vol.56 (7), p.1254-1265
Hauptverfasser: He, Chao, Zhou, TianJun, Zou, LiWei, Zhang, LiXia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using the reanalysis data and 20th century simulation of coupled model FGOALS_gl developed by LASG/IAP, we identified two distinct interannual modes of Northwestern Pacific Subtropical Anticyclone (NWPAC) by performing Empirical Orthogonal Function (EOF) analysis on 850 hPa wind field over the northwestern Pacific in summer. Based on the associated anoma- lous equatorial zonal wind, these two modes are termed as "Equatorial Easterly related Mode" (EEM) and "Equatorial Westerly related Mode" (EWM), respectively. The formation mechanisms of these two modes are similar, whereas the maintenance mechanisms, dominant periods, and the relationships with ENSO are different. The EEM is associated with E1 Nifio decaying phase, with the anomalous anticyclone established in the preceding winter and persisted into summer through local positive air-sea feedback. By enhancing equatorial upwelling of subsurface cold water, EEM favors the transition of ENSO from E1 Nifio to La Nifia. The EWM is accompanied by the E1 Nifio events with long persistence, with the anomalous anticyclone formed in spring and strengthened in summer due to the warm Sea Surface Temperature anomalies (SSTA) forcing from the equatorial central-eastern Pacific. The model well reproduces the spatial patterns of these two modes, but fails to simulate the percentage variance accounted for by the two modes. In the NCEP reanalysis (model result), EEM (EWM) appears as the first mode, which accounts for 35.6% (68.2%) of the total variance.
ISSN:1674-7313
1869-1897
DOI:10.1007/s11430-012-4443-y