Cyclic biogeochemical processes and nitrogen fate beneath a subtropical stormwater infiltration basin

A stormwater infiltration basin in north–central Florida, USA, was monitored from 2007 through 2008 to identify subsurface biogeochemical processes, with emphasis on N cycling, under the highly variable hydrologic conditions common in humid, subtropical climates. Cyclic variations in biogeochemical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of contaminant hydrology 2012-05, Vol.133, p.53-75
Hauptverfasser: O'Reilly, Andrew M., Chang, Ni-Bin, Wanielista, Martin P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A stormwater infiltration basin in north–central Florida, USA, was monitored from 2007 through 2008 to identify subsurface biogeochemical processes, with emphasis on N cycling, under the highly variable hydrologic conditions common in humid, subtropical climates. Cyclic variations in biogeochemical processes generally coincided with wet and dry hydrologic conditions. Oxidizing conditions in the subsurface persisted for about one month or less at the beginning of wet periods with dissolved O2 and NO3− showing similar temporal patterns. Reducing conditions in the subsurface evolved during prolonged flooding of the basin. At about the same time O2 and NO3− reduction concluded, Mn, Fe and SO42− reduction began, with the onset of methanogenesis one month later. Reducing conditions persisted up to six months, continuing into subsequent dry periods until the next major oxidizing infiltration event. Evidence of denitrification in shallow groundwater at the site is supported by median NO3−–N less than 0.016mgL−1, excess N2 up to 3mgL−1 progressively enriched in δ15N during prolonged basin flooding, and isotopically heavy δ15N and δ18O of NO3− (up to 25‰ and 15‰, respectively). Isotopic enrichment of newly infiltrated stormwater suggests denitrification was partially completed within two days. Soil and water chemistry data suggest that a biogeochemically active zone exists in the upper 1.4m of soil, where organic carbon was the likely electron donor supplied by organic matter in soil solids or dissolved in infiltrating stormwater. The cyclic nature of reducing conditions effectively controlled the N cycle, switching N fate beneath the basin from NO3− leaching to reduction in the shallow saturated zone. Results can inform design of functionalized soil amendments that could replace the native soil in a stormwater infiltration basin and mitigate potential NO3− leaching to groundwater by replicating the biogeochemical conditions under the observed basin. ► Monitored a stormwater infiltration basin in a humid, subtropical climate. ► Analyzed soil, stormwater and groundwater samples for biogeochemical indicators. ► Observed oxygen, nitrate, manganese, iron, and sulfate reduction and methanogenesis. ► Cyclic biogeochemical processes coincided with wet–dry hydrologic conditions. ► Cyclic reducing conditions switched nitrogen fate from nitrate leaching to reduction.
ISSN:0169-7722
1873-6009
DOI:10.1016/j.jconhyd.2012.03.005